8 research outputs found

    On Reliability-Aware Server Consolidation in Cloud Datacenters

    Full text link
    In the past few years, datacenter (DC) energy consumption has become an important issue in technology world. Server consolidation using virtualization and virtual machine (VM) live migration allows cloud DCs to improve resource utilization and hence energy efficiency. In order to save energy, consolidation techniques try to turn off the idle servers, while because of workload fluctuations, these offline servers should be turned on to support the increased resource demands. These repeated on-off cycles could affect the hardware reliability and wear-and-tear of servers and as a result, increase the maintenance and replacement costs. In this paper we propose a holistic mathematical model for reliability-aware server consolidation with the objective of minimizing total DC costs including energy and reliability costs. In fact, we try to minimize the number of active PMs and racks, in a reliability-aware manner. We formulate the problem as a Mixed Integer Linear Programming (MILP) model which is in form of NP-complete. Finally, we evaluate the performance of our approach in different scenarios using extensive numerical MATLAB simulations.Comment: International Symposium on Parallel and Distributed Computing (ISPDC), Innsbruck, Austria, 201

    Distributed VNF Scaling in Large-scale Datacenters: An ADMM-based Approach

    Full text link
    Network Functions Virtualization (NFV) is a promising network architecture where network functions are virtualized and decoupled from proprietary hardware. In modern datacenters, user network traffic requires a set of Virtual Network Functions (VNFs) as a service chain to process traffic demands. Traffic fluctuations in Large-scale DataCenters (LDCs) could result in overload and underload phenomena in service chains. In this paper, we propose a distributed approach based on Alternating Direction Method of Multipliers (ADMM) to jointly load balance the traffic and horizontally scale up and down VNFs in LDCs with minimum deployment and forwarding costs. Initially we formulate the targeted optimization problem as a Mixed Integer Linear Programming (MILP) model, which is NP-complete. Secondly, we relax it into two Linear Programming (LP) models to cope with over and underloaded service chains. In the case of small or medium size datacenters, LP models could be run in a central fashion with a low time complexity. However, in LDCs, increasing the number of LP variables results in additional time consumption in the central algorithm. To mitigate this, our study proposes a distributed approach based on ADMM. The effectiveness of the proposed mechanism is validated in different scenarios.Comment: IEEE International Conference on Communication Technology (ICCT), Chengdu, China, 201
    corecore